Journal of Organometallic Chemistry, 303 (1986) 73-81 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ORGANOBORIERUNG VON ALKINYLSTANNANEN XV *. SYNTHESE VON 1,2-DIHYDRO-1,2,5-DISILABOREPINEN

ANGELIKA SEBALD, PETRA SEIBERLICH und BERND WRACKMEYER*

Institut für Anorganische Chemie der Universität München, Meiserstrasse 1, D-8000 München 2 (B.R.D.) (Eingegangen den 25. September 1985)

Summary

The reaction between 1,2-diethynyl-tetramethyldisilane (1) and two equivalents of diethylaminotrimethylstannane (2) leads to 1,2-bis(trimethylstannylethynyl)-tetramethyldisilane (3). The new alkyne derivative 3 reacts, already at room temperature, with trialkylboranes, R_3B (5) (R = Me, Et), quantitatively to give 1,1,2,2-tetramethyl-3,7-bis(trimethylstannyl)-4,5,6-trialkyl-1,2-dihydro-1,2,5-disilaborepines (6). The reaction is much slower with $R = Pr^i$ which allows detection of intermediates by NMR spectroscopy. All products are characterized by ¹H, ¹¹B, ¹³C, ²⁹Si and ¹¹⁹Sn NMR data.

Zusammenfassung

1,2-Diethyl-tetramethyldisilan (1) lässt sich durch Reaktion mit zwei Äquivalenten Diethylaminotrimethylstannan (2) quantitativ in 1,2-Bis(trimethylstannylethinyl)-tetramethyldisilan (3) überführen. Das neue Alkinderivat 3 reagiert bereits bei Raumtemperatur mit Trialkylboranen R_3B (5) (R = Me, Et), wobei quantitativ 1,1,2,2-Tetramethyl-3,7-bis(trimethylstannyl)-4,5,6-trialkyl-1,2-dihydro-1,2,5-disilaborepine (6) entstehen. Mit $R = Pr^i$ verläuft die Reaktion langsamer, so dass der NMR-spektroskopische Nachweis von Zwischenprodukten gelingt. Alle Produkte sind durch ¹H-, ¹¹B-, ¹³C-, ²⁹Si- und ¹¹⁹Sn-NMR Daten charakterisiert.

Die Organoborierung von Alkinylstannanen mit $R^2 = H$, Alkyl, Aryl, verläuft in der Regel stereospezifisch zu den Alkenderivaten A mit Stannyl- und Borylgruppe in *cis*-Stellung an der C=C Doppelbindung [2] (Gl. 1).

$$Me_{3}Sn-C \equiv C-R^{2} + BR_{3}^{1} \longrightarrow R^{2}_{Me_{3}}Sn + R^{2}_{BR_{2}^{1}} + R^{2}_{Me_{3}}Sn + R^{2}_{R^{1}}$$
(1)
(A) (B)

Ist $R^2 = Me_3Si$, Me_3Ge , so wird neben A auch B, oder sogar überwiegend nur B gefunder [3]. Gleichzeitig beobachtet man, dass die Rückreaktion, die De-

0022-328X/86/\$03.50 © 1986 Elsevier Sequoia S.A.

^{*} XIV. Mitteilung s. Lit. 1.

organoborierung, bei $\hat{\mathbf{R}}^2 = Me_3Si$, Me_3Ge , Me_3Sn [2,4] bei erhöhter Temperatur leicht abläuft. Besteht die Möglichkeit, dass entweder A oder **B** selektiv irreversibel weiter reagieren (z.B. unter Ringbildung), verschiebt sich das Gleichgewicht in Gl. 1 entsprechend. Wir haben kürzlich gezeigt, dass wir dies für eine neue ergiebige Silol-Synthese ausnutzen können [5] (Gl. 2).

$$Me_{2}Si(C \equiv C - SnMe_{3})_{2} + BR_{3}^{1} \longrightarrow Me_{2}Si \qquad BR_{2}^{1}$$

$$Me_{3}Sn \qquad BR_{2}^{1}$$

$$Me_{3}Sn \qquad (2)$$

In der vorliegenden Arbeit berichten wir über die Reaktion von Trialkylboranen (5) mit 1,2-Bis(trimethylstannylethinyl)tetramethyldisilan (3). Auch hier war der Zugang zu neuen Heterocyclen zu erwarten.

Präparative Ergebnisse

Zur bequemen Darstellung von 3 wurde zunächst das 1,2-Diethinyltetramethyldisilan 1 hergestellt (in > 80% Ausbeute aus 1,2-Dichlortetramethyldisilan und HC=CMgBr in THF). Die Umsetzung von 1 mit zwei Äquivalenten Diethylaminotrimethylstannan [6] lieferte quantitativ 3 (Gl. 3).

$$\begin{array}{c} \text{Me}_{2}\text{Si}-\text{C}\equiv\text{CH} \\ \text{I} \\ \text{Me}_{2}\text{Si}-\text{C}\equiv\text{CH} \\ \text{(1)} \\ (2) \\ \end{array} + 2 \text{Me}_{3}\text{SnNEt}_{2} \xrightarrow{\text{Particular}} \begin{array}{c} \text{Me}_{2}\text{Si}-\text{C}\equiv\text{C}-\text{SnMe}_{3} \\ \text{He}_{2}\text{Si}-\text{C}\equiv\text{C}-\text{SnMe}_{3} \\ \text{Me}_{2}\text{Si}-\text{C}\equiv\text{C}-\text{SnMe}_{3} \\ \end{array}$$
(3)

Versuche zur Synthese des mono-stannylierten Derivates 4 (Reaktion von 1 und 2 im Verhältnis 1/1) zeigten, dass 4 stets im Gemisch mit 1 und 3 vorliegt.

$$Me_{2}Si - C \equiv CH$$
$$Me_{2}Si - C \equiv C - SnMe_{3}$$
$$(4)$$

Das neue Alkinderivat 3 wurde mit Trialkylboranen 5 umgesetzt. Trimethylboran (5a) und Triethylboran (5b) reagierten mit 3 bereits bei Raumtemperatur (in CH_2Cl_2 , $CHCl_3$ oder Hexan) vollständig jeweils zu einem Produkt, 6a,b (Gl. 4). Triisopropylboran (5c) reagierte bei Raumtemperatur in $CHCl_3$ sehr langsam. Nach Erwärmen (0.5 h) auf 60°C entstand ein Substanzgemisch von 7 und 8 (ca. 60/40) (Gl. 5), dessen Zusammensetzung NMR spektroskopisch bestimmt wurde. Nach 12 h bei 60°C wurde ein einheitliches Produkt, 6c, isoliert, analog zu 6a,b.

Auch ein grosser Überschuss von BR_3^1 ($R^1 = Me$, Et) ergab keine offenkettigen Produkten. Es ist weiterhin bemerkenswert, dass die Reaktionen letztlich selektiv zu den Heterocyclen 6 führen. Wir konnten bisher noch keine eindeutigen Hinweise auf einen 6-gliedrigen Ring 9 finden, der aus Zwischenstufen analog zu 8 in Konkurrenz zu 6 entstehen könnte. Schwache Signale in den ¹H- und ¹³C-NMR-Spektren von 6a ($R^1 = Me$) sind mit der Gegenwart von 9a (< 5%) vereinbar.

$$Me_{3}Sn$$

$$Me_{2}Si$$

$$Me_{2}Si$$

$$Me_{3}Sn$$

$$(9)$$

TABELLE 1

NMR Untersuchungen

Die Information aus zahlreichen NMR Daten belegen die Strukturen der neuen Verbindungen. Die Daten für die Alkine 1, 3, 4 finden sich in Tab. 1; Tab. 2 enthält die Messwerte für die Verbindungen 6, und in Tab. 3 sind relevante NMR Parameter der im Gemisch vorliegenden Zwischenstufen 7, 8 zusammengestellt.

Kopplungskonstanten ${}^{n}J({}^{13}C^{1}H)$ in 1, ${}^{n}J({}^{29}Si^{13}C)$ und ${}^{n}J({}^{119}Sn^{13}C)$ in 3, 4 sichern die Zuordnung für die ${}^{13}C$ -Resonanzen. Die ${}^{29}Si$ -Resonanzen sind aufgrund der

Verbindung	¹³ C-NMR			· ·	δ(²⁹ Si)	δ(¹¹⁹ Sn)
	$\overline{\delta(C^{\alpha})}$	$\delta(C^{\beta})$	δ(SiMe)	δ(SnMe)		
$\frac{\alpha \ \beta}{Me_2SiC=CH}$	87.5 ^b	96.6°	- 3.3 ^d	_	- 36.7	_
$Me_2 SiC = CH$ (1)	[74.2]	[13.8]	[50.2]			
Me ₂ SiC=CSnMe ₃	115.4	116.2	- 2.9	- 7.7	- 39.3 °	-76.3 ^f
$\frac{Me_2SiC=CSnMe_3}{(3)}$	[67.2] (57.9)	[10.4] (382.4)	[48.8]	(402.8)		
Me ₂ SiC≡CH	87.9	96.2	-2.6	- 8.2	- 36.8 ^g	
$Me_{2} \overset{\text{i}}{\underset{\alpha'}{\text{SiC}}} C \equiv CSnMe_{3}$ (4)	[71.2] 114.8 (α') [68.0] (59.5)	[13.2] 116.7 (β') [10.5] (390.6)	[49.0] 3.4 [48.8]	(402.8)	- 39.2 ^h	- 75.8

13 C-, 29 Si- UND 119 Sn-NMR DATEN ^{*a*} DER ALKINE 1, 3, 4 IN C₆D₆

^{*a*} $J({}^{29}\text{Si}{}^{13}\text{C})$ in [], $J({}^{119}\text{Sn}{}^{13}\text{C})$ in (), ± 0.7 Hz. ^{*b*} $J({}^{13}\text{C}{}^{1}\text{H})$ 41.4 Hz. ^{*c*} $J({}^{13}\text{C}{}^{1}\text{H})$ 237.6 Hz. ^{*d*} $J({}^{13}\text{C}{}^{1}\text{H})$ 123.2 Hz. ^{*e*} $J({}^{119}\text{Sn}{}^{29}\text{Si})$ 9.4 Hz. ^{*f*} $\delta({}^{119}\text{Sn})$ in CDCl₃: -73.8. ^{*s*} $J({}^{29}\text{Si}{}^{29}\text{Si})$ 98.0, ${}^{4}J({}^{119}\text{Sn}{}^{29}\text{Si})$ < 5.0 Hz. ^{*h*} $J({}^{119}\text{Sn}{}^{29}\text{Si})$ 9.4 Hz.

	¹³ C-NMI	ર					$\delta(^{11}B)$	δ(²⁹ Si)	$\delta(^{119}\text{Sn})$
Me2Si 3 4 B-R1	$\overline{\delta(C(3,7))}$	δ(C(4,6))	δ(SiMe)	δ(SnMe)	$\delta(\mathbf{R}^1)$	$\delta(BR^1)$			
Me ₂ Si 7 6 Me ₃ Sn R ¹									
$\overline{\mathbf{R}^1 = \mathbf{M}\mathbf{e}}$	139.9	179.4	±0.0	- 5.1	26.2	14.6	78.8 ^b	- 22.0	- 54.1
(6a)	[49.1]	(br ^{<i>d</i>})	[42.4]	(305.2)	[14.6]	(br^{d})		(61.4 ^c ,	(br ^{<i>d</i>})
	(289.5)				(107.5)			56.1 °)	
$R^1 = Et$	139.0	185.4	±0.0 °	- 4.8	33.7	24.9	77.0 ^b	- 22.9	- 56.2
(6b)	[51.0]	(br^d)	[46.5]	(303.9)	[13.2]	(br^{d})		(60.0 ^c ,	(br ^{<i>d</i>})
	(294.6)				(103.5)			55.0)	
					15.1	8.9			
					(9.3)				
$\mathbf{R}^1 = \mathbf{Pr}^i$	137.4	188.6	1.3 /	- 3.6	42.5	31.8	75.4 ^b	- 24.1	- 56.7
(6c)	[50.4]	(br ^{<i>d</i>})	[45.2]	(302.6)	[13.2]	(br ^{<i>d</i>})		(61.3 ^c ,	(br ^{<i>d</i>})
	(289.2)		0.2 ^f		(103.5)			61.3 °)	
			[42.4]		21.1,	25.2			
					20.0 8	r			

¹¹B-, ¹³C-, ²⁹Si-, ¹¹⁹Sn-NMR DATEN " DER 1,2-DIHYDRO-1,2,5-DISILABOREPINE 6 IN CDCl₃

^{*a*} $J({}^{29}\text{Si}{}^{13}\text{C})$ in [] und $J({}^{119}\text{Sn}{}^{13}\text{C})$, bzw. $J({}^{119}\text{Sn}{}^{29}\text{Si})$ in (), ± 0.7 Hz. ^{*b*} Die ${}^{11}\text{B}$ -Resonanzen sind sehr breit; ~ 800 (**6a**), ~ 950 (**6b**), und ~ 1100 Hz (**6c**). ^{*c*} Die Kopplungskonstanten | ${}^{2}J({}^{119}\text{Sn}{}^{29}\text{Si})$ | und | ${}^{3}J({}^{119}\text{Sn}{}^{29}\text{Si})$ | sind hier fast gleich gross; eine Zuordnung ist derzeit nicht möglich. ^{*d*} Signalverbreiterung infolge partiell relaxierter Kopplungen ${}^{1}J({}^{13}\text{C}{}^{11}\text{B})$, bzw. ${}^{3}J({}^{119}\text{Sn}{}^{11}\text{B})$. ^{*e*} Verbreitert infolge langsamer (NMR Zeitskala)Ringinversion; $\Delta G^{*}(20^{\circ}\text{C}) 62 \pm 1$ kJ Mol⁻¹. ^{*f*} Aufspaltung infolge langsamer (NMR Zeitskala)Ringinversion. ^{*s*} Die Methylgruppen sind hier diastereotop.

unterschiedlichen Werte $|{}^{3}J({}^{119}\text{Sn}{}^{29}\text{Si})| \gg |{}^{4}J({}^{119}\text{Sn}{}^{29}\text{Si})|$ zuzuordnen. Die Parameter sind im Einklang mit bekannten Werten für Alkinylstannane und Silane [7].

Die Zuordnung der ¹³C-Resonanzen in den Heterocyclen **6** ist aufgrund der Kopplungen ${}^{n}J({}^{29}\text{Si}{}^{13}\text{C})$ und ${}^{n}J({}^{119}\text{Sn}{}^{13}\text{C})$ abgesichert (vgl. Fig. 1). Die ¹³C-NMR Spektren (ebenso wie die ¹H-NMR Spektren) für **6b,c** zeigen im Einklang mit Modellen, dass die Ringe nicht planar sind. Die vergleichsweise schlechte magnetische Abschirmung der ¹¹B-Kerne in **6a,b,c** legt nahe, dass mögliche BC- π -Wechselwirkungen infolge der sterischen Verhältnisse vermindert sind [8–11].

Aus den ²⁹Si-NMR Spektren [12] sind die Kopplungen ^{2,3} $J(^{119}Sn^{29}Si)$ zu entnehmen. Dabei fällt auf, dass der Wert für $|^2J(^{119}Sn^{29}Si)|$ kleiner ist als in vergleichbaren Monosilanen [3], oder auch in 7, 8. Beide Werte in den Ringen 6 sind eine Funktion der Bindungswinkel und der Ringstruktur. Besonders bei ${}^{3}J(^{119}Sn^{29}Si)$ ist eine Abhängigkeit vom Diederwinkel im Sinne einer "Karplus"-Korrelation zu erwarten [13].

Auch die ¹¹⁹Sn-Resonanzen für die Verbindungen **6** finden sich im Erwartungsbereich. Die Linienbreiten belegen die *trans*-Stellung von Stannyl- und Borylgruppe an der C=C-Doppelbindung [3].

Erste wichtige Hinweise auf die Struktur von 7 und 8 stammen aus den ²⁹Si- und ¹¹⁹Sn-NMR Spektren. Die ^{117/119}Sn-Satelliten in den ²⁹Si-NMR Spektren, die δ (²⁹Si)-Werte, die Signalintensitäten und die geringfügig verschiedenen Linienbreiten ermöglichen bereits eine vorläufige Strukturzuordnung. Diese wird gestützt

TABELLE 2

TABELLE 3

¹³C, ²⁹Si, ¹¹⁹Sn-NMR DATEN ^a DER ZWISCHENPRODUKTE 7 UND 8

Verbindung	¹³ C-NMR					-	δ(²⁹ Si)	δ(¹¹⁹ Sn)
	δ(C ^a)	δ(C ^β)	ð(SiMe)	ô(SnMe)	ð(Pr')	ô(BPr ¹ ₂)		
αβiC≡CsnMe ₃ Me₂siC≡CsnMe ₃ Me₂si,α' β' Pri	117.6 (α) (59.0)	114.8 (<i>β</i>) (399.5)	-1.5, -0.9	– 7.7 (≡CSnMe) (402.3)	43.0 (131.8)	26.4 (br [/])	- 36.3 (SiC≡) (26.0 ^h , 9.4 ^c)	- 75.7 (SnC≡)
Me ₃ sn ⁷ =CBr ⁱ (7)	134.3 (α') (345.4)	$\frac{189.0(\beta')}{(~72^{~})}$		– 3.8 (=CSnMe) (302.0)	23.6	19.0, 19.4	-28.5 (SiC=) (82.2 ^d , < 6.0 ^e)	- 62.5 (SnC=)
Me₂SiC≡CSnMe₃ Me₂ ^{Si} BPr ⁱ ₂ C=C	117.2 (α) (59.0)	115.9 (<i>β</i>) (396.7)	0.3, 0.9	– 7.8 (≡CSnMe) (402.3)	45.9 (120.7)	26.2 (br [/])	− 37.2 (SiC≡) (9.4 °, < 6.0 ^h)	– 74.9 (SnC≡)
Me ₃ sn Pri (8)	137.4 (α') (308.0)	$184.7 (\beta')$ (~ 42 ^f)		– 4.2 (=CSnMe) (308.0)	23.6	19.6, 19.8	- 28.2 (SiC=) (97.0 ^d , < 6.0 ^e)	– 68.4 (SnC=)
" I(119Sn13C) hzw I(119Sn	²⁹ Si) in () + () 7	Hz ^{h 3} 1 ¹¹⁹ Sn(-Ci 29Ci) C 3 1/119	Cnr r 2961 d 2 1/1196.	C 2961 6 4	1196°C CC: 29	Civ / Device 13/ Device	the second second second

^vSnC CSi²⁹Si). / Breite ¹³C-Resonanzen infolge partiell ŗ SnC+'Si). 5 Succession : , Sucsi-isl, Ň -J("Sn" C), bzw. J("Sn" Sn" Sn) In (), ± 0.7 Hz. " relaxierter Kopplungen J(¹³C¹¹B).

77

Fig. 1. 50.3 MHz ¹³C-NMR-Spektrum (¹H-entkoppelt) von **6b** (~15% in CDCl₃, 27–28°C); die borgebundenen Kohlenstoff-Atome geben die breiten ¹³C-Resonanzen (4,6,f); gespreizt und verstärkt ist die ¹³C(3,7)-Resonanz gezeigt, mit ^{117/119}Sn-, ²⁹Si-Satelliten, typisch für ¹J(²⁹Si¹³C) und ¹J(¹¹⁹Sn¹³C) entsprechend der vorgeschlagenen Struktur; die ¹³C-Resonanzen der SiMe₂-Gruppen (b,c) sind merklich verbreitert (Koaleszens bei ~ 20°C).

durch das paarweise Auftreten von unterschiedlich breiten und scharfen $(Sn-C=)^{119}$ Sn-Resonanzen mit Intensitäten, vergleichbar zu den ²⁹Si-NMR Signalen. Die *trans*-Stellung von Stannyl- und Borylgruppe in **8** bedingt ein breiteres ¹¹⁹Sn-Resonanzsignal als in **7**, wo *cis*-Stellung vorliegt. Die ¹³C-NMR Spektren vervollständigen das Bild mit der Zuordnung aller geforderten ¹³C-Resonanzen für **7** and **8**. Die Zuordnung beruht hier, wie für **6**, auf Kopplungen ^{*n*}J(¹¹⁹Sn¹³C) und auf partiell relaxierten Kopplungen (¹J(¹³C¹¹B)).

Experimentelles

Alle Reaktionen wurden in einer N₂-Atmosphäre unter Verwendung von trockenen, O₂-freien Lösungsmitteln durchgeführt. Als Ausgangsmaterialien standen 1,2-Dichlortetramethyldisilan (Reinheit ~ 90%) und Triethylboran zur Verfügung. Trimethylboran [14], Triisopropylboran [15] und Diethylaminotrimethylstannan [16] erhielten wir nach Literaturvorschriften.

NMR-Spektren wurden mit einem Bruker WP 200 FT Spektrometer in 5 mm Rohren (¹H) oder 10 mm Rohren (¹¹B, ¹³C, ²⁹Si, ¹¹⁹Sn) von ca. 15% Lösungen in trockenem CDCl₃ oder C₆D₆ aufgenommen (27–28°C). Chemische Verschiebungen, δ, beziehen sich auf internes Me₄Si (¹H), externes BF₃ · OEt₂ (¹¹B), externes Me₄Si (¹³C, δ (¹³C) (CDCl₃) 77.0, δ (¹³C) (C₆D₆) 128.0), (²⁹Si) und externes Me₄Sn (¹¹⁹Sn). ²⁹Si-NMR Spektren wurden mit der INEPT (refokusiert) [17] oder der DEPT [18] Pulssequenz aufgenommen. ¹¹⁹Sn-NMR Spektren wurden mit "inverse gated" ¹H-Entkopplung (NOE-Unterdrückung) registriert.

IR-Spektren wurden an einem Perkin-Elmer 325 Spektrometer gemessen, und Massenspektren sind mit einem Varian CH7 Spektrometer aufgenommen worden. Elementaranalysen wurden in den analytischen Laboratorien des Anorganisch- und des Organisch-Chemischen Institutes durchgeführt.

1,2-Diethinyl-tetramethyldisilan (1)

Zu Ethinylmagnesiumbromid (1.0 *M*) in 800 ml THF [19], bei -78° C in einem 3-Halskolben mit Rückflusskühler, mechanischem Rührer und Tropftrichter vorgelegt, wird in 0.5 h eine Lösung von 94.0 g Me₄Si₂Cl₂ (0.5 *M*) in 150 ml THF getropft. Nach Erwärmen auf Raumtemperatur lässt man über Nacht rühren. Nach Zugabe von 250 ml Pentan werden vorsichtig 250 ml 1*N* Salzsäure zugetropft (jetzt kann ohne Schutzgas weitergearbeitet werden). Die organische Phase wird abgetrennt und 12 × mit je 250 ml 1*N* Salzsäure gewaschen. Die vereinigten wässrigen Anteile werden dreimal mit je 70 ml Pentan ausgeschüttelt. Die vereinigten organischen Phasen werden wiederum sechsmal mit jeweils 250 ml 1*N* Salzsäure gewaschen und dann über MgSO₄ getrocknet (dieses Verfahren reduziert den THF-Anteil vor der Destillation auf $\leq 10\%$). Die fraktionierte Destillation liefert 60.0 g 1 (83%) als farblose Flüssigkeit, Sdp. 80–85°C/100 Torr. IR: $\nu (\equiv C-H)$ 3287, $\nu (C \equiv C)$ 2029 cm⁻¹; ¹H-NMR (in C₆D₆): δ (¹H) 0.25 (s, 12H), 2.19 (s, 2H). Gef.: C, 57.25; H, 7.87. C₆H₁₄Si₂ (166.37) ber.: C, 57.76; H, 8.48%.

1,2-Bis(trimethylstannylethinyl)-tetramethyldisilan (3)

In einem 50 ml-2-Halskolben mit Magnetrührstab und Rückflusskühler wird eine Lösung von 8.5 g Diethylaminotrimethylstannan (2) (0.036 *M*) in 30 ml Hexan auf -78° C abgekühlt. Nach Zugabe von 2.5 g 1 (0.015 *M*) erwärmt man auf Raumtemperatur, erhitzt 12 h auf 60°C. Lösungsmittel und überschüssiges 2 werden bei Raumtemperatur im Vakuum abkondensiert (6 h), wobei 3 als farbloser kristalliner Feststoff (Schmp. 38–42°C) quantitativ zurückbleibt. IR (CH₂Cl₂): ν (C=C) 2060 cm⁻¹; ¹H-NMR (C₆D₆): δ (¹H) 0.15 (s, 12H), 0.17 (s, 18H, ²J(¹¹⁹Sn¹H) 60.6 Hz). Gef.: C, 34.85; H, 6.26. C₁₄H₃₀Si₂Sn₂ (491.94) ber.: C, 34.18; H, 6.15%.

1,1,2,2,4,5,6-Heptamethyl-3,7-bis(trimethylstannyl)-1,2-dihydro-1,2,5-disilaborepin (6a)

Eine Lösung von 1 g 3 (2 mmol) in 15 ml CH₂Cl₂, in einem 50 ml Kolben, wird an einer Vakuumapparatur sorgfältig entgast. Dann werden 2.5 mmol Trimethylboran (5a), gemessen über den Dampfdruck, hinzukondensiert. Im Reaktionsraum wird ein N₂-Druck von 600 Torr eingestellt, bevor auf Raumtemperatur erwärmt wird. Es tritt eine gelbe Färbung der Reaktionslösung auf. CH₂Cl₂ und überschüssiges Trimethylboran werden abkondensiert. Der Kolben enthält 1.096 g eines gelben Öls. Die Aufnahme der NMR Spektren in CDCl₃ zeigt, dass es sich um reines ($\geq 95\%$) 6a handelt. Beim Versuch der Destillation erfolgt Zersetzung bei $\geq 110^{\circ}$ C/10⁻³ Torr. ¹H-NMR (in CDCl₃): δ (¹H) (J(¹¹⁹Sn¹H)) 0.09 (s, 8H) SiMe, 0.19 (51.5) (s, 18H) SnMe, 0.64 (s, 3H) BMe, 1.94 (12.8) (s, 6H). Gef.: C, 36.58; H, 7.35. C₁₇H₃₉BSi₂Sn₂ (547.85) ber.: C, 37.27; H, 7.18%.

1,1,2,2-Tetramethyl-3,7-bis(trimethylstannyl)-4,5,6-triethyl-1,2-dihydro-1,2,5-disilaborepin (**6b**)

In einem 2-Halskolben werden 1.5 g 3 (3 mmol) in 20 ml CHCl₃ gelöst. Nach Abkühlen auf -78° C werden 0.4 g Triethylboran (**5b**) (4 mmol) zugegeben. Beim Erwärmen auf Raumtemperatur verfärbt sich die Reaktionslösung gelblich. Nach 1 h Rühren werden CHCl₃ und überschüssiges **5b** im Vakuum entfernt. Im Kolben verblieben 1.77 g eines gelben Öls, welches laut NMR reines ($\ge 98\%$) **6b** ist. Zersetzung erfolgt bei $\ge 120^{\circ}$ C/10⁻³ Torr. ¹H-NMR (CDCl₃): δ (¹H) (J(¹¹⁹Sn¹H) 0.08 (s, br, 12H) SiMe; 0.18 (51.0) (s, 18H) SnMe; 1.28 (q, 2H), 0.88 (t, 3H) BEt, 2.23 (q, 4H), 0.99 (q, 6H) Et, m/z (70 eV) 592 (0.5%, M^+), 577 (2, $[M - Me]^+$), 165 (65, $[Me_3Sn]^+$), 58 (100, $[Me_2Si]^+$). Gef.: C, 40.77; H, 7.65. C₂₀H₄₅BSi₂Sn₂ (589.93) ber.: C, 40.72; H, 7.69%.

1,1,2,2-Tetramethyl-3,7-bis(trimethylstannyl)-4,5,6-triisopropyl-1,2-dihydro-1,2,5-disilaborepin (**6c**)

Es wird anfänglich wie bei **6b** verfahren (Ansatz 3 mmol). ²⁹Si-NMR-Spektren nach Erwärmen auf Raumtemperatur zeigen nur Ausgangsprodukt 3. Erhitzt man die Reaktionslösung 0.5 h auf 60°C zeigt das ²⁹Si-NMR Umsatz zu 7 und 8 an. Nach 12 h Erwärmen auf 60°C, Abkondensieren von CHCl₃ und überschüssigem **5c** verbleiben im Kolben 1.90 g eines gelben Öls, bei dem es sich laut NMR um reines ($\ge 98\%$) **6c** handelt. Zersetzung erfolgt beim Destillationsversuch bei $\ge 120^{\circ}C/10^{-3}$ Torr. ¹H-NMR (CDCl₃): $\delta(^{1}$ H) ($J(^{119}$ Sn¹H)) 0.1 (s, 6H) SiMe; 0.12 (s, 6H) SiMe; 0.22 (50.4) (s, 18H); 1.1 (m, br, 1H), 1.02 (d, 6H) BPr¹; 2.60 (sp, 2H), 1.14 (d, 6H), 1.16 (d, 6H), Pr¹. Gef.: C, 43.42; H, 8.23. C₂₃H₅₁BSi₂Sn₂ (632.01) ber.: C, 43.71; H, 8.13%.

Dank

Wir danken dem Fonds der Chemischen Industrie und der Deutschen Forschungsgemeinschaft für Unterstützung. Der Firma Wacker-Chemie danken wir für eine Spende von 1,2-Dichlor-tetramethyldisilan. Herrn Prof. Dr. R. Köster sind wir für die grosszügige Überlassung von Triethylboran zu Dank verpflichtet.

Literatur

- 1 S. Kerschl und B. Wrackmeyer, Z. Naturforsch. B, 39 (1984) 1037.
- 2 B. Wrackmeyer, Revs. Silicon, Germanium, Tin, Lead Compds., 6 (1982) 75.
- 3 B. Wrackmeyer, Polyhedron, im Druck.
- 4 (a) B. Wrackmeyer, Z. Naturforsch. B, 33 (1978) 385; (b) B. Wrackmeyer, C. Bihlmayer und M. Schilling, Chem. Ber., 116 (1983) 3182; (c) B. Wrackmeyer, Organometallics, 4 (1984) 1.
- 5 B. Wrackmeyer, J. Chem. Soc. Chem. Commun., im Druck.
- 6 M.F. Lappert und B. Prokai, J. Organomet. Chem., 1 (1964) 384.
- 7 (a) B. Wrackmeyer, J. Organomet. Chem., 166 (1979) 353; (b) B. Wrackmeyer, J. Magn. Reson., 42 (1981) 287; (c) S. Kerschl, A. Sebald und B. Wrackmeyer, Magn. Res. Chem., 23 (1985) 514.
- 8 δ(¹¹B)-Vergleichswerte f
 ür entsprechende 6-Ringe (B-alkyl-1-bora-4-heteroatom-2,5-cyclohexadiene), f
 ür die aufgrund sterischer Verh
 ältnisse im Mittel (NMR Zeitskala) eine weitgehend planare Struktur angenommen werden darf, liegen zwischen + 55- + 67 [9-11].
- 9 H.-O. Berger, H. Nöth und B. Wrackmeyer, Chem. Ber., 112 (1979) 2866.
- 10 H.-O. Berger und H. Nöth, J. Organomet. Chem., 250 (1983) 33.
- 11 C. Habben, W. Maringgele und A. Meller, Z. Naturforsch. B, 37 (1982) 43.

- 12 H. Marsmann, ²⁹Si-NMR Spectroscopic Results, in P. Diehl, E. Fluck und R. Kosfeld (Hrsg.), NMR -Basic Principles and Progress, Vol. 17, Springer Verlag Berlin-Heidelberg-New York, 1981, p S. 65-235.
- 13 T.N. Mitchell, W. Reimann und C. Nettelbeck, Organometallics, 4 (1985) 1044.
- 14 R. Köster, P. Binger und W.V. Dahlhoff, Synth. React. Inorg. Metal-Org. Chem., 3 (1973) 359.
- 15 E. Krause und P. Nobbe, Chem. Ber., 64 (1931) 2112.
- 16 C.M. Wright und E.L. Muetterties, Inorg. Synth., 10 (1967) 137.
- 17 (a) G.A. Morris und R. Freeman, J. Am. Chem. Soc., 101 (1979) 760; (b) D.P. Burum und R.R. Ernst, J. Magn. Reson., 39 (1980) 163; (c) G.A. Morris, J. Magn. Reson., 41 (1980) 185.
- 18 D.T. Pegg, D.M. Doddrell und M.R. Bendall, J. Chem. Phys., 77 (1982) 2745.
- 19 (a) E.R.H. Jones, L. Skattebøl und M. Whiting, Org. Synth., 39 (1959) 56; (b) L. Brandsma und H.D. Verkruijsse, Synthesis of Acetylenes, Allenes und Cumulenes, Elsevier, Amsterdam 1981.